36 research outputs found

    Structural and Mechanistic Studies of Measles Virus Illuminate Paramyxovirus Entry

    Get PDF
    Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family

    What Is Direct Allorecognition?

    Get PDF
    Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived β€˜passenger’ dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHCpeptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves. We discuss how direct alloimmune responses may be sustained long term, the consequences of this for graft outcome and highlight novel strategies which are currently being investigated as a potential means of reducing rejection mediated through this pathway

    Exposure and risk factors to Coxiella burnetii, spotted fever group and typhus group rickettsiae, and Bartonella henselae among volunteer blood donors in Namibia

    Get PDF
    Background: The role of pathogen-mediated febrile illness in sub-Saharan Africa is receiving more attention, especially in Southern Africa where four countries (including Namibia) are actively working to eliminate malaria. With a high concentration of livestock and high rates of companion animal ownership, the influence of zoonotic bacterial diseases as causes of febrile illness in Namibia remains unknown.Methodology/Principal Findings: The aim of the study was to evaluate exposure to Coxiella burnetii, spotted fever and typhus group rickettsiae, and Bartonella henselae using IFA and ELISA (IgG) in serum collected from 319 volunteer blood donors identified by the Blood Transfusion Service of Namibia (NAMBTS). Serum samples were linked to a basic questionnaire to identify possible risk factors. The majority of the participants (64.8%) had extensive exposure to rural areas or farms. Results indicated a C. burnetii prevalence of 26.1% (screening titre 1:16), and prevalence rates of 11.9% and 14.9% (screening titre 1:100) for spotted fever group and typhus group rickettsiae, respectively. There was a significant spatial association between C. burnetii exposure and place of residence in southern Namibia (P0.012), especially cattle (P>0.006), were also significantly associated with C. burnetii exposure. Males were significantly more likely than females to have been exposed to spotted fever (P<0.013) and typhus (P<0.011) group rickettsiae. Three (2.9%) samples were positive for B. henselae possibly indicating low levels of exposure to a pathogen never reported in Namibia.Conclusions/Significance: These results indicate that Namibians are exposed to pathogenic fever-causing bacteria, most of which have flea or tick vectors/reservoirs. The epidemiology of febrile illnesses in Namibia needs further evaluation in order to develop comprehensive local diagnostic and treatment algorithms.Peer reviewedEntomology and Plant Patholog
    corecore